Lattice

We will prove that	t (Eq(A); S) is	s a lattice		
with Eq(A) bein	g the set of all	equivalence relati	ions on A	
and A being a	an arbitrary set.			
	by showing that	t Pand Q hold fo	or any two elements	X and Y in Eq (A).
def. P <=> the join of	X and Y is (X ° 4)*		
def	f X and Y is X			

proof of P

Nina Gassner
proof (I):
σεοοπ
(=> ∀x ∀y ((x,y)∈ O → (x,y)∈ O ∘ π)) universal instat.
((x, y) ∈ o → (∃₂((x, ₂) ∈ o ∧ (₂, y) ∈ π)))
$(=((x,y)\in O \rightarrow ((x,y)\in O \land (y,y)\in \Pi))$ reflexivity of Π
<=> ((x, y) ∈ o → (x, y) ∈ o)
<=> ((x, y) & o v (x, y) e o)
The last statement is trivially true.
Thus, $\phi \subseteq \phi \circ \pi$.
The same explanation works for the proof of $\pi \subseteq \circ \circ \pi$.

	(2):							,	04	٠,																						
	be (1 - 0																														
	P(n)	<=>	(a	, Ь)	€	(O (πο) ^k	=) (b,	a)	€ ((O- 0	· 11)*	Fc	70	all	۵,۱	b i	n	A									
	with	Ο,	π	bei	9	e	qυi	val	en	e	re	latio	ons	Or	٠,	sor	ne	se	t A													
Le	t A L	e th	1e	uni	ver	se.																										
pro	oof b	y ir	ndu	ctio	n:																											
	base	co	se	:	PCI)		(L	et	a, l	2	be	ar	bitro	arc	ı ∈	elen	ner	nts	ò	A.)										
		(i)	(a.	ь)	€	(0-	0	π)'																								
										(, h) €	π)												,						_
												s) E			7		~)			(-16	2 7	r)								dπ.
																										L-SC	ımı	nei	rų	OF	0	and
												() ∈							2 \	. (α, α	2) (E 1)								
											٨	()	κ, ς	չ) ∈	2 (0 0	π)														
		=>	- ((Ь,	a)	€	(0	0 T	() 2																							
		=>		(Ь,	a)	€	(0	0 7	τ)*	(i	i)																					
		a s	(i)	=> ((ii)	h	olc	ls,	P	(1)	ho	olds																				
	induc	tion	h	400	the	sie	:		P(n) <i>F</i>	nole	ds	for	ی.	om	ne	∩ E	N	+													
	induc	rion	st	ep:																												
	(i)	(a,	b)	ϵ	(0	. 0	π)	n+1																							
		=>	3	×	((α,	×	€	((۰ د	π)	2	(×, }	(د	€	(0	o 11))				le	kist.	in	itia	izo	tion		н		
												(×											' -									
												k /							π))			1.0	1.01		n#: 0):- c	+:-		ho		case
												۷ /											1 6	XIS!	1	1110	1120		1,	Jus		CUS
												k									(0		6	(0	o T	١١						
																					(6,	Ζ,	_	(U	- (1	/)						
												k+1		(6	, e) €	(0	0	((()													
		=>	3 E	<	((Ъ,	a)	E	((ه د	T)	k+2)																			

Nina Gassner

proof by in	nductio	n:	Vn €	N*	(P	(n)																										
with P(r	def. ((x ⊆ 2	2 ^ (, ∈ ≥) =>	(X°	۷) [^] <u>د</u>	≘ 2	?)		fo	r all	ele	me	nts	×	Υ,	z	in	Eq ((A)											
ose case:																				·												
proof bu	contr	adic	tion	: 51	JPP	ose	tha	ıt I	P(1)	doe	so'i	ha	ld.																			
	P(1))													2 ^	Υ =	Z	^	¬ ()	χοY	') ⊆	Ζ.)		014	0.0	i∩st						
										(\(\frac{1}{2}\)													'	CA		11131						
										ExE	ľ		ľ					' '														
										(x, 4	'		,					' '		,			1	exis	t.	inst.						
																47	4	- /														
										ε Ψ				١.												(z						
									l ' l	€ 2		^ (х, с	1) e	Z					-1						(;						
		=>		(x, 4) ∈	2	^	(x, y)	& 2	2																					
				0.0+	sta	tem	nent	is	fal	se.	Th	us,	the	as	sum	Pti	on	mı	JST	hav	e t	oee	nι	ron	g.							
		TF	ne l	USI																												
						P(1)	ho	olde	3.																							
induction hy	pothes	Т	nere	fore	,1					e N⁺																						
induction hy		Т	nere	fore	,1					e N³																						
	<u>-</u> ρ:	Ti sis:	nere P(n)	fore ho	i, i	for	so	me	2 0			esn't	ho	101																		
nduction ste	contr	Tis:	nere P(n)	fore ho	i, i Ids upp	for	so th	me at	P(n	+1)	doe				Y <u>c</u>	. 2	^)) ٦	XoY	y) ^{∩+1}	<u>د</u> :	≥)		exi	st.	inst						
nduction ste	<u>-</u> ρ:	Tisis: adict	nere (n) ion	fore ho	, I Ids upp 3 Z	for	so th x, y,	at 2)	P(n	1+1) Eq(A	do:	^ 2	< ⊆	2 ^							⊆ ;	≥)	-1	exi	st.	inst						
nduction ste	contr	Tisis: adict =>	nere (n) ion 3 x	fore ho	, I Ids Upp 3 Z	for	: so ≥ th ×, ∨, ⊆ Z	at 2)	P(n) @	(4×)	doe 1)3 Vy	л) ((ж,	< ⊆ y) ∈	2 ^	, yĵ	+1	(×	(, y)	€ ;	Z)		≥)	<u>'</u>									
nduction ste	contr	T/ iis: adict >>	nere non 3 x x x	fore ho	i, I	for OSE ((Y	so th x, y, & Z & Z	at Z	P(n) @	(1+1) P) P3 P(Y) (Y×1) E×E	doe 1)3 Vy (((x,	x ⊆ y) ∈ y) ∈	2 ^ (x	() ())*'~)*'^	(×	(, y) (, y)	€ ;	Z)		≥)	<u>'</u>			inst.						
nduction ste	contr	Tisis: adict => (=> =>	nere noi x E x X	Fore ho	upp 3 Z ^	for OSE ((Y Y	sothx, y,£Z£Z	at Z	P(n) @	(+1) Eq(P (V×1) E×E (x, y)	doe 1)3 Vy (y (((x, (x, (x, (x, (x, (x, (x, (x, (x, (x	x ⊆ y) ∈ y) ∈ γ)*	2 ^ (x	(x,)*'~)*'^ y)	(x (x	(,ų) (,ų) ≥)	e 2	Z)			-1	exis	t. i	nst.						
nduction ste	contr	Tiss: adict => => =>	ion ion X X X	Fore ho	upp 3 Z	for Ose ((Y Y	sothx, y,eeeee	at . Z)	P(n) @	(1+1) (1+1) (2) (2) (3) (4) (4) (4) (4) (5) (6) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	doe (1)3 Yu (1) (2) (2)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	x ⊆ q) ∈ q) ∈ γ)*	Z ^ (X	(×,)*'~)*'^ y)	(x (x	(,ų) (,ų) ≥)	e 2	Z)			-1	exis	t. i	nst.		: ca	ase			
proof by	contr	Tiis: adict => (=> => =>	noion noi X X E X X E X X E X X E X X E X X E X X E X X E X X E X	Fore ho	2 (s.)	for (((Y Y Y Y Y E Z	So th X, Y, G Z G Z G Z	at	P(m) @	(1+1) (1+1) (1+1) (1-1) (2-1) (1	doe (1)3 Vy (1) (2) (2) (2) (2) (2) (3)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	x ⊆ q) ∈ q) ∈ γ)*	Z ^ (X	(×,)*'~)*'^ y)	(x (x	(,ų) (,ų) ≥)	e 2	Z) Z)	(x, i	4) Φ	1	exis	Ť. i	nst.	ose)		
proof by	contr	=> => =>	noiion XE XE XX	fore ho	2 E	for (((Y Y Y E Z	so th X, Y, G Z G Z G Z	at	P(n) @	(11) (1) (2) (3) (4) (4) (5) (5) (6) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	doe (1)3 Vy (1) ((x, 2)	((x, (x, (x, x, x	(X S (4) E (4) E (4) E (4) E (4) E	2 ^ (X (X (X (X (X) (Y) (X)	(x,)*1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(x (x e 2	(, ų) (, ų) ≧) (x∘	€ ; € ;	Z) Z)	(×, -	y) ∉	 Z	exis	t. i	nst. I, b	ose)		
proof by	contr	=> => =>	noiion XE XE XX	fore ho	2 E	for (((Y Y Y E Z	so th X, Y, G Z G Z G Z	at	P(n) @	(1+1) (1+1) (1+1) (1-1) (2-1) (1	doe (1)3 Vy (1) ((x, 2)	((x, (x, (x, x, x	(X S (4) E (4) E (4) E (4) E (4) E	2 ^ (X (X (X (X (X) (Y) (X)	(x,)*1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(x (x e 2	(, ų) (, ų) ≧) (x∘	€ ; € ;	Z) Z)	(×, -	y) ∉	 Z	exis	t. i	nst. I, b	ose			-		
proof by	contr	Tiis: adict (=) =) =) =) Th	A SEE	fore ho	JIds Upp 3 Z A A A State	for (((Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z Z	so th X, Y, 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	at Z)	P(n) (E) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(11) (1) (2) (2) (3) (4) (4) (5) (6) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	doed doed doed doed doed doed doed doed	((x, (x, (x, (x, (x, (x, (x, (x, (x, (x	(X = y) = y)* (X = x, y) the	2 ^ (X (X (X (X) (Y)^ () &	(x,)*1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(x (x e 2	(, ų) (, ų) ≧) (x∘	€ ; € ;	Z) Z)	(×, -	y) ∉	 Z	exis	t. i	nst. I, b	ose)		

Nina Gassner

proof of Q

proof of Q																					
	1 two	o equ	ivale	nce	re	latio	ns	0	and	π	on	A,	(0-	ο π)	is (olso	an	equi	vale	ence relation on A
proof:																					
	سااا ۽	orove	this	sto	tem	ent	Ьц	ch	eckir	9	all	con	ditio	ns	OF	equ	ivale	nce	relo	tiOr	ns:
Le	t c	t and	π	be	equ	uval	enc	e re	latio	0	n /	ને.	Let	АЬ	e t	he	unive	erse			
	ı)	0 0	π	is	refl	lexiv	e :														
		(1)	Vα	((0	a, al	€	0-	٨	(a,	a) 6	π)	(b	ų re	flex	civitu	of	ο, π)	-	by definition of n
		<=>	V۵	((0	a, a)) €	0	\cap Π)												
		<=>	0	η π	is	refle	exiv	e													
		As	(1)	is	true	ь	ı re	flexi	vity	of	0-	and	ι π.	Thu	ıs,	a n	π i.s	ref	lexive	2.	
	2)																				
		(I)							0 0											,	existential instantiation
		=>							0 0												
		=>	(0	6)														\			by definition of n
			(a,	٠, ر										E (0	^	(c, b) E	11		by transitivity of a and T
		=>							^												definition of n
		=>				(a,	ь)	€	0 0	77)	(2)								
		As	CI) => (2)	ho	lds.	, (r n T	is	tro	nsi	tive.								
	3)	0 0	π	is	syr	$\gamma \gamma \gamma \gamma$	etri	c:	let	a	and	ь	be	art	oitro	ary e	leme	ents	in (٦.	
		(1)		((a	(, b)	€	0	n 1	7										-	definition of A
		=>			(c	a, b)	€	0-	^	(a	ь)	€	π							ı,	symmetry of a and T
		=>			(E	o, a)	€	0	_	(ь	, a)	€	π							٠.	definition of a
		=>		-					ο π											'	
		A	()) =>									met	cic							
	C.											,			+11.00		,	T :-			auticipa and mining
							eive	, 30	11717	1211	C	uric	117	ا گد ام	iive	=1	0, 1	1 15	ar	- 60	quivalence relation.
	1 1	uently																			
As	all	X and	Υ	in E	Q (F	J) c	re	equ	ivale	nce	ге	loti	ons,	it	als	o h	olds	tho	† X	ΛΥ	is an equivalence relation on A by (i
Thu.	s,	XaY	ϵ	g (A	١)	(ii)															

(iii) (=> Y Z((Z € EQ(A) \ Z ⊆ X \ Z ⊆ Y) -> Z ⊆ X ∩ Y)
proof by contradiction:
Suppose that (iii) was false.
T(iii) (=> = Z (Z \in Eq (A) A Z \in X \in Y A Z \in X \in Y) exist instant.
=> Z S X ^ Z S Y ^ Z \$ X ^ Y
(+> Va(a∈Z →(a∈ X ∧ a∈ Y)) ∧ Z ⊈ X ∩Y definition of n
⇒ Va(a∈Z → a∈XnY) A Z & XnY
=> Z S X \ \ \ Z \ X \ \ \ \ Z \ X \ \ \ \ \ \
The last statement is false. Thus, the assumption must have been false.
Therefore, (iii) must hold.
(iv) def. XnY = X x XnY = Y
proof of (iv):
$X \cap Y \subseteq X \Leftrightarrow \forall_X (x \in (X \cap Y) \rightarrow x \in X)$
<=> ∀× ((×∈ X ∧ x∈ Y) → x∈ X)
∀x (¬(x∈ X ∧ x∈ Y) ∨ x∈ X)
(=> ∀× (× & × ∨ × ∈ Y ∨ × ∈ ×)
<=> ∀× (×€ Y v T)
<=> ∀ _× (T)
The last statement is trivially true.
Thus, XnY S X holds.
The same argumentation also works for XnY SY.
Thus, (iv) holds.
By (ii), (iii) and (iv): Q holds.