discusto.ch	exercise		
DiscMath Feat	· Lu Alg		
Ritusik Maju	U U		
		and $\rho \subseteq A \times A$ a	relation.
Fix M. a mod Parlos		Δ	
Define the adja	cency matrix M	= (m;) e {0,13	by
	S A if Co	a_i , a_j) $\epsilon \rho$	
	Mij = 2 0 other	rwise	
Recall pt is H	re k-fold compo	sition of parth	itself.
(a; a;) & pt off	there exist (01,, bk-1) EA	with
(a1, 61) E P, (b1, 62) E P , , (b t	-1 a,) E P.	
To reflect compos	ifion we use the	e boolean matrix	product.
For two EC, 13	-matrices A = (a	ij) and B=(bij)	défine their
boolan produc	+ 2 = A 0 B by		
Z _i	- V (air 1 bri)		
		with air = 1 and	Urj = 1.
Claims.			
	acency matrix	of s. then the	K-Kr boolean
Power Mox	That is multiply	of p, then the ing M with itself	le-times using
() 15 the a	diacency matri	x of pt. Concret	ely
	9 9	1 1	O
<u> </u>	(a_i, a_j)	1 6 /	

Proof by induction. Base L=0: PO=idA. By definition MO=In. The entry (In); -1 iff i=j, which matches (a, a;) & idA. So the statement holds for k=C Base 4:1: MO1 = M. By construction (M); = 1 Iff (a; a;) EP. So the statement holds for k=1Moduction hypothesis:
Assume the statement holds for an arbitrary $k \in \mathbb{N}$, i.e. $(M^{Ok})_{ir} = 1 \text{ iff } (a_i, a_r) \in P^k \text{ for all } i, r.$ Inductive step:

Consider k+1. By definition of the boolean product:

(MO(k+1)); = (MO(OM)); = V ((MO(N)); \(M M M M M); \) By the inductive hypothesis $(M^{Ok})_{ir} = 1$ exactly when $(a_r, a_j) \in p$.

Therefore the right-hand side is 1 precisely when there exists r with $(a_i, a_r) \in p^k$ and $(a_r, a_j) \in p$, so when $(a_i, a_j) \in p^{k+1}$. This proves the claim for let 1. By induction the claim holds for all 1 E M. Thus, the identity

