Content
Rings
🚧

under construction

Rings

Integral Domains

Commutative Rings with no zerodivisors.

Theory

Exercises

Alternative Solution Bonus 9aSource:  Max Obreiter

Let R;+,,0,,1\langle R; +, -, 0, \cdot, 1 \rangle be an integral domain; a,bRa, b \in R and n,mNn, m \in \mathbb N. We then define condition (1)(1):

0<mngcd(m,n)=1am=bman=bn(1) \begin{aligned} 0 < m \le n \land \gcd(m, n) = 1 \land a^m = b^m \land a^n = b^n && (1) \end{aligned}

Prove that if (1)(1) is satisfied, we have a=ba = b.

Show it without using the fact that there exist x,yZx, y \in \mathbb Z s.t. xm+yn=1xm + yn = 1 holds.

Counting Multiplicative GeneratorsDifficulty: 2/5Relevance: 🎓🎓🎓🎓Source:  Yannick Funke

How many generators does the cyclic group GF(3)[x]x3+2x2+1\mathrm{GF}(3)[x]_{x^3+2 x^2+1}^* have? Why is the group cyclic in the first place?